Using the HC-06/HC-05 Bluetooth Adapter For Serial Communication With Linux

For many applications, sending serial data from a microcontroller to a computer is easily achieved using one of these serial to USB adapters:

For a recent project the microcontroller in question was mounted on a rotating arm so using a normal wired usb to serial adapter was out of the question. Here is a short video of the rotating arm:


A HC-06 serial bluetooth adapter came to the rescue. It had been sitting in a parts bin for several years and this was its moment. Here is a pic of the breadboard circuit with a teensy, the HC-06 and a BNO55 IMU chip:

Breadboard circuit with Teensy 3.6, HC-06 Bluetooth Adapter and 9DOF IMU


The HC-06 only has 4 pins. RX, TX, GND and VCC so just connect the power pins and connect the RX and TX on the module to the RX and TX of your micro-controllers serial port.

HC-06 Serial Bluetooth Adapter


The HC-06 is particularly handy if the computer it connects to is running linux. In this case, the laptop had built in bluetooth and was running fedora. The first step is to go into the settings, enable bluetooth and find the mac address of the HC-06:

Fedora Bluetooth Settings

The HC-06 shows up as “Linvor”. Clicking on it brings up this window:

Copy and paste the MAC address into a notepad to save for later use.

This is where using Linux makes things nice and easy. You can bind the MAC address to a serial port using this command :

Replace the MAC address with your one.

This will create a serial port , most likely called /dev/rfcomm0 (unless you have another rfcomm device already created in which case it might be rfcomm1, 2 etc.)

To connect to the port, you can use whatever program you normally use to connect to a serial port. It could be a python script or something like Minicom or picocom etc.

To connect using Picocom the command would be:

Once you run this command the light on the HC-06 will go from blinking (which means not connected) to solid red (which means it is connected) and you have a bluetooth serial link.

This is a really handy method for quickly sending data from any microcontroller back to a computer wirelessly. The fact that the bluetooth link shows up like a normal serial port and without too much faffing around is what makes this great.

Posted in Microcontrollers | Tagged , , , , , | Leave a comment

OpenWave #7 : Displacement measurement results – peak detect vs zero crossing

This post will detail an experiment in which the wave sensor was attached to a rotating arm at three different diameters. These diameters were 40cm, 60cm and 80cm. For each diameter, measurements were taken at two speeds to get an idea of how rotation frequency affects measurement accuracy. This gives a total of 6 sets of data.

The speeds will be referred to as speed 1 and speed 2. With speed 2 being around 1.5 to 2 times faster than speed 1.

Two seperate methods of resetting the integration counter were used and compared. The first is detecting the peaks of the acceleration signal using this to reset the integration, the second method is using the zero crossings as the reset point.


Zero crossing method:

Speed 1:

Actual(cm) Measured(cm) %Error
40 40.97 2.42%
80 81.67 2.09%
60 62.59 4.32%

Speed 2 :


Peak detect method:

Speed 1:

Actual(cm) Measured(cm) %Error
40 39.14 2.15%
80 82.24 2.8%
60 58.64 2.27%

Speed 2:

Actual(cm) Measured(cm) %Error
80 77.57 3.04%
60 60.76 1.27%
40 38.62 3.45%

The results are very encouraging. In particular it was interesting that the zero crossing method provides results very similar to the peak detect method of integration reset. Zero crossing would be the preferred method for an embedded system because it takes much less processing power to detect zero crossings compared to peaks.

Posted in Uncategorized | 4 Comments

OpenWave #6 : Getting vertical displacement working

Post #5 outlined the steps used to go from vertical acceleration to vertical displacement and how the results were completely off. The reason why each of the displacement graphs at the end of the post look so totally different just by changing the integral reset points is because of a negative offset to the velocity signal. This causes huge problems when you go to integrate the signal. Lets take a look at the vertical acceleration signal again:

Z-axis acceleration signal

You may notice that there is a negative offset of somewhere around -0.15 in the acceleration signal.  This offset was noticed and removed before the first integration to go from acceleration to velocity. The issue occurred at the second integration stage, going from velocity to displacement. It turns out the velocity signal also had a small offset present that went unnoticed and caused all of the issues outlined in post #5.

Lets take a look at an example graph with which does not offset correct the velocity signal before integrating to get displacement:

The blue vertical lines indicate the seperate chunks of data, with everything being split based on the minima of the acceleration signal. You may notice that the velocity signal has a slight positive bias. When this signal is integrated to get the bottom graph of displacement, the displacement starts at zero but does not return to zero as you would expect as the rotating arm is rotating in a circle.

Now lets take a look at the graphs when you do offset correct before each integration step:

Displacement with offset correction of acceleration and velocity

This plot finally makes some sense, and to make things better, the average displacement for the 5 chunks of data is 41.7cm. This measurement has an error of 4.25 %. The results from offset correcting are very encouraging but more testing needs to be done to verify that this isn’t just a case of confirmation bias.  A more comprehensive experiment is planned involving multiple wave heights. Extra mounting holes have been drilled into the rotating arm at a radius of 20cm, 40cm and 60cm. Measurements will be taken with the sensor at the three different radii and compared to the actual values in the next blog post.

Posted in Uncategorized | Leave a comment

OpenWave #5 : The displacement calculation problem

This post will examine the steps currently being used to go from vertical acceleration data to vertical displacement and the issues involved.

Step 1: Getting acceleration data

The first step is to setup the rotating arm with the IMU attached, rotate it for a fixed amount of time, say 60 seconds and capture the raw linear acceleration data for the z-axis which is the vertical axis. See below video for an example of the rotating arm.


Note that this video is just an example of the arm rotating. All of the data used in this post was obtained with the arm set to a 40cm diameter and a rotation speed of approximately 0.2Hz. The recorded z-axis acceleration data looks something like this:

Step 2 : Filtering acceleration signal

As it is, this signal is too noisy to work with and so it is first filtered before any other signal processing steps occur. The low-pass filtered signal is shown in orange below:

Step 3 : Peak detection

Now that we have a relatively smooth signal to work with, peak detection is relatively simple. The orange x marks on the graph below mark the peaks and troughs of the signal.

Step 4: Break signal into chunks and double integrate each chunk

These peak detection points are used to break the signal into chunks where each chunk is separately integrated twice to go from acceleration chunks to displacement chunks. The displacement chunks can then be graphed which looks like this:

One issue is that changing the integral reset point has a drastic impact on the end displacement result. The above image was obtained by detecting the minima and maxima in the acceleration signal and breaking it into chunks at those points. If you break the signal at just the minima you get the following displacement graph:

Displacement obtained by resetting integration at minima

By using the maxima to reset the integration you get this graph:

Remember that the actual arm diameter was 40cm so we should see a maximum displacement of 40cm. Take the above image for example. The first blue line on the left goes from approximately 0.2m down to -0.5m which is a total displacement of 0.7 meters. The rightmost blue line goes from 0.2 down to -0.2 which is exactly what the expected result would be. More testing is necessary to try and narrow down the cause of this issue.

Posted in Uncategorized | Leave a comment